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Abstract
The forests ofKalimantan areunder severepressure fromextensive landuse activities dominatedby logging,
palmoil plantations, andpeatlandfires.To implement the forestmoratoriumformitigating greenhouse gas
emissions, Indonesia’s government requires informationon the carbon stored in forests, including intact,
degraded, secondary, andpeat swamp forests.Wedeveloped ahybrid approachofproducing awall-to-wall
mapof the abovegroundbiomass (AGB)of intact anddegraded forests ofKalimantan at 1hagrid cells by
combiningfield inventoryplots, airborne lidar samples, and satellite radar andoptical imagery.More than
110 000haof lidar datawere acquired to systematically capture variationsof forest structure andmore than
104fieldplots todevelop lidar-biomassmodels.The lidarmeasurementswere converted intobiomassusing
models developed for66 439haof drylands and44 250haofwetland forests. By combining theAGBmap
with thenational land covermap,we found that 22.3Mha (106ha)of forest remainondrylands ranging in
biomass from357.2±12.3Mgha−1 in relatively intact forests to 134.2±6.1Mgha−1 in severelydegraded
forests. The remainingpeat swamp forests areheterogeneous in coverage anddegradation level, extending
over 3.62Mhaandhaving anaverageAGBof 211.8±12.7Mgha−1. Emission factors calculated from
abovegroundbiomass only suggest that the carbon storagepotential ofmore than15Mhaof degraded and
secondarydryland forestswill be about 1.1PgC.

1. Introduction

The forests of Indonesia have been severely impacted
from a combination of large-scale industrial logging,

conversion to oil palm plantations and other land use
activities (Carlson et al 2013). Over a period of 10 years
from 2000–2012, approximately 10% of old growth
dryland forests and 17% of wetlands were cleared for
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various land use activities (Margono et al 2014). A
recent study using satellite imagery showed that more
than 90% of land converted to oil palm was previously
dominated by forests (47% intact, 22% logged, 21%
agroforests), suggesting the growing interest of
agricultural expansion in the forestlands (Carlson
et al 2013). This expansion is particularly intense in
Kalimantan, where industrial-scale extractive activ-
ities began in the early 1970s, and more than 30% of
the original forests have been lost, a rate higher than all
other tropical regions (Carlson et al 2012, Gaveau
et al 2013, Busch et al 2015). Between 1980 and 2000,
the total round wood harvested from this region was
larger than from Africa and Amazon combined,
making Kalimantan the hot spot of tropical forest
degradation (Curran 2004).

The forests of Kalimantan occur over diverse land-
scapes across edaphic and nutrient gradients extend-
ing from the old growth drylands, hill and montane
dipterocarp forests to fresh water and peat swamp for-
ests including Alang-Alang, heath forests (Kerangas),
mangroves, and Nypa palm dominated forests along
the coastal regions (MacKinnon 1997).

The remaining forests of Kalimantan are divided
into intact forests, mainly found on higher elevation
and outside the reach of logging companies, and a low-
land fragmented forests extending to wetlands, with
agroforestry plantations, scrublands, and croplands. A
significant extent of tropical forests in the lowlands
have been logged commercially or will be in the near
future unless conservation plans either under REDD
(Reduced Emissions fromDeforestation andDegrada-
tion) or other plans are implemented. In both eastern
and western Kalimantan, local-scale topographic var-
iation restricts mechanized logging; commercially
valuable, well-drained lowland dipterocarp forest is
frequently intermixed with patches of swamp forest
impassable to heavy machinery (Cannon et al 1998).
These remnants, although surrounded by degraded
and plantation forests, may still have some degree of
diversity and may benefit from being identified and
mapped at high spatial resolution. The unlogged low-
land forest is species-rich, but the commercial species
(mainly Shorea laevis, S. hopeifolia, andDryobalanops
beccarii, in the family Dipterocarpaceae) dominate,
comprising 70% of total precut basal area (Bertault
and Sist 1997).

Identifying areas of degraded forests and quantify-
ing their carbon stocks have a been an important
component of any conservation or emission reduction
activities in the region. In particular, government
institutions of Indonesia, international agencies and
conservation groups have been interested in develop-
ing a set of reliable emission factors for different
degrees of degradation to develop programs that can
achieve the national sustainable development goals
through the carbon sequestration of degraded and sec-
ondary forests. Furthermore, these forests are subject
to deforestation due to the increasing demand for

palm oil production (Carlson et al 2012). Existing data
on emission factors and total emissions from forest
degradation are based on few data sets limited to one
or two concessions in the region that predict even
higher emissions compared to other tropical regions
(Pearson et al 2014). However, these estimates are not
only limited to a few sites, but also include data from
managed and low impact logging practices that
may not represent all types of logging activities in
Kalimantan. In this study, we quantify the carbon
storage in the remaining forests of Kalimantan and
estimate the carbon sequestration potential of degra-
ded landscapes.

Approximately half of these remaining forests are
under active logging concessions and have the poten-
tial to be promoted for carbon sequestration and con-
servation. However, unlike deforestation, forest
degradation from logging and wood extraction is hard
to detect, and this is a key problem in carbon emission
accounting (Carlson et al 2013). Despite efforts tomap
forest logging with moderate- and high-resolution
remote sensing data (Siegert et al 2001, Asner
et al 2005, Souza et al 2005, Ellis et al 2016, Pfeifer
et al 2016), the detection and mapping of tropical for-
ests impacted by logging or other human activities still
remain active areas of research. The problemof detect-
ing degraded forests is particularly difficult in the case
of Kalimantan because of the complexity of the terrain
causing larger heterogeneity in forest structure.

Here, we develop a wall-to-wall map of above-
ground biomass (AGB) at 1 ha spatial scale for the
entirety of Kalimantan. By using a combination of
ground inventory plots, random sampling of forest
structure using airborne light detection and ranging
(lidar) scanning systems, and satellite observations, we
report AGB density and total carbon stored for all
remaining forests of Kalimantan, including both
intact and degraded dryland and swamp forests. To
help separate intact forests, we developed the forest
degradation index (FDI) to characterize and map gra-
dients of forest degradation (ranging from intact to
severely degraded and secondary forests). This degra-
dationmap allows us to quantify the actual and poten-
tial carbon storage of these forests for sequestration
that can be used in future national climate mitigation
policies.

2.Methods

We integrate field inventory data (SI1.1 is available
online at stacks.iop.org/ERL/13/095001/mmedia),
airborne lidar sampling (SI1.2), satellite measure-
ments (SI2.1) and a forest-type land cover map (SI2.2)
into a random forest (RF)machine-learning algorithm
(SI3) to produce a wall-to-wall AGB density map at 1
ha grid cells.We designed a probabilistic airborne lidar
sampling based on the Verified Carbon Standard
(VCS) VT0005 tool (Tittmann et al 2015); red dots in
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figure 1(a)) to capture the variations of forest structure
in all remaining forests of Kalimantan. The samples
included 29 flight lines of approximately 1000 ha (0.5
km×20 km) randomly located across the forest
regions using the reverse randomized quadrat recur-
sive raster approach (Theobald et al 2007). An
additional 28 flight lines with different coverage areas
were designed to collect lidar data over ground
inventory plots and to extend the survey of forest
structure between the samples (Meledy et al 2017). The
total airborne lidar data collected for this study was
about 111 000 ha with 66 439 ha over drylands and
44 250 ha overwetlands.

The field inventory comprises 104 plots (82 in dry-
lands and 22 in wetlands) with sizes varying from
0.1 ha to 0.25 ha to develop models for converting
lidar measurements on forest structure into AGB, and
to assess the uncertainty of the AGB map. The plots
cover a range of biomass from about 100 Mgha−1 in
severely degraded forest to about 960Mgha−1 in intact
drylands (tables SI1 and SI2).

We used the lidar-derivedmean top canopy height
(MCH; m), which is calculated by averaging the
canopy height model (CHM) pixels located within a
given forest plot, to develop the lidar-AGBmodels:

e= + ( )AGB a MCH. 1b

where a is the scaling factor, b is the power-law
exponent, and e s ( )N 0, 2 represents the uncertainty
in measurements (Meyer et al 2013, Asner and
Mascaro 2014). We developed two distinct lidar-AGB

models for drylands and wetlands forests in order to
account for clear distinctions in tree density and
structure between the two ecosystems (SI1.3). All
lidar-based AGB estimates from both random and
non-random samples were used to train the RF
algorithm (SI3) that produced a wall-to-wall AGB
density map. The RF algorithm used satellite imagery
including surface reflectance from Landsat-8, ALOS
PALSAR (L-band Radar) and Sentinel-1 (C-band
Radar), terrain characteristics from SRTM data and a
land covermap (SI2).

We focused this study on the land cover classes of
intact lowland and montane forests, secondary and
degraded forests, and peat swamp forest over whichwe
had reliable field and lidar inventory data to calibrate
the models as well as to assess the uncertainty of the
AGB map. We also included estimates of other forest
cover types present in the study domain such as
swamp scrublands, scrublands and tree plantations.
TheAGB reporting, therefore, includes about 45.6Mha
out of the 54 Mha of the Kalimantan landscape, the
remainder being crops/agriculture and urban/settle-
ments (figure SI1). The geographical extent of these
land cover classes was estimated based on the Landsat
classification of Kalimantan carried out by the Indone-
sian Ministry of Forestry (IMF, SNI 2016, SI2.2). We
reported our results based on the classificationmap and
existing areas of selective logging, oil palm and wood
fiber concessions (SI2.2 and figure SI4). We extended
the definition of forest degradation to include not only
the selectively logged forests but all types of forest

Figure 1.Boundary of Kalimantanwithin the island of Borneo showing (a) vegetation types of drylands andwetlandswith the location
of field inventory andALS transects, (b) the canopy heightmodel (CHM) (1000 m×1500 m) derived from the lidar point cloud
showing forest roads of a logging concession, and (c) a sample of vertical profile (825 m×30 m)with gradients of degradation.
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degradation caused by infrastructure development to
severely logged and fragmented forests where a sig-
nificant number of large trees were removed. Using this
definition, we updated the IMF drylands forest map
with the most recent forest cover change (Hansen et al
2013) to exclude deforestation areas and refined the
IMF land cover map by integrating a remote sensing
derived Forest Degradation Index (FDI) that captures
the gradient of forest disturbance indrylands:

= + + ( )FDI MCH LCR PC 2

where MCH is the top mean forest height (m), LCR
represents the percentage of each 1 ha pixel covered by
large trees (height>27 m and crown radius>5.6 m2,
(Meyer et al 2018) and PC is the percentage of
vegetation cover taller than 5mheight. These products
were also developed using the RF algorithm trained by
lidar-derived samples (SI1.4). FDI is a structure-based
index that was trained over different degrees of forest
degradation in the study domain to develop thresholds
that can separate forests into five classes of intact, light,
moderate, high and severe degradation (SI3.1). Finally,
we examined the existing conditions of wetlands by
analyzing the AGB density of primary and secondary
peat swamp pole tall forest (also called tall interior
forests), peat swamp pandang forest, burnt peat
swamp forest, riverine forest and alan-alang.

The uncertainty associated with the estimation of
the average AGB for a given region of interest (e.g. a
forest type or administrative region) was estimated
by propagating local- and pixel-level errors to the
entire region considering the RF prediction errors and
the spatial autocorrelation of errors (SI6.4, Chen
et al 2015). The uncertainty of the lidar-AGB model
and the RF predictions were evaluated using a cross-
validation bootstrapping approach by randomly
selecting 70% of samples for modelling and 30% for
validation (SI6.1 and SI6.2). We derived a pixel-level
uncertainty map that captures the stability of our pre-
dictions across gradients of forest structure and sur-
face topography (SI6.3). Additionally, we directly
compared the lidar-AGB predictions with ground-
estimated AGBover some independent plots (SI6.5). A
summary of themethodological steps, including input
data, processing components, model development
andmap product generation, is shown infigure 2.

3. Results

3.1. Lidar-AGBmodels
The lidar-derived MCH provides strong power-law
relationships with AGB for dryland (R2=0.81) and
wetland forests (R2=0.79). The power-law models
are significantly different, showing a higher biomass in
wetland forests for a given lidar MCH because of a
relatively high tree number density and basal area
compared with drylands forests (figure 3). We

assumed the two models developed in this study
capture the largest structural and allometric differ-
ences in the region between wetlands and drylands.
Without having adequate plots in all forests types
present in our study domain, wewere not able to verify
if there are other vegetation types such as primary
swamp pole forests and mangroves with distinct lidar
models. Similar assumptions have also been made
about the AGB estimates at the ground plots. We
assumed that the pan-tropic allometric model pro-
vides reasonable estimates of AGB for all forest types
in the region (Chave et al 2014).

3.2. Spatial distribution of AGB
Thewall-to-wall AGBmap of Kalimantan derived from
RF algorithmcaptures the imprints of landuse activities
and fragmentations on the spatial variations of AGB
(table 1 and figure 4). Dense canopy forests with tall
trees andhighAGBare located inland away fromcoastal
regions and with biomass density increasing at higher
elevation where more intact forests are located
(figures 4(a) and (b)). The average AGB density of the
entire study region from the RF map is 178.4±
7.5 Mgha−1, ranging from 34.7±10.1 Mgha−1 for
young tree plantations to 312.7±20.6 Mgha−1 for
intact lowland forests. The four target land cover classes
(denotedwith * in table 1) account for 90%of total AGB
with an average of 274.1±14.0Mgha−1.

The estimates of average AGB and uncertainty
from the original lidar samples and the RF map
are provided in table 2. The AGB of intact
lowland (312.7±20.6 Mgha−1) and montane forests
(311.0±51.2 Mgha−1) are similar and together they
occupy an area nearly as large as the secondary and
degraded forests, which stores in average 51 Mgha−1

less than intact forest. The AGB density of peat swamp
forests is even lower (211.8±12.7 Mgha−1) but cov-
ers a large spectrum of AGB density (the 5th and 95th
percentile equal 30.9 and 403.3 Mgha−1). Peatlands
are heterogeneous and occupy a highly fragmented
landscape ranging from highly dense primary peat
swamp pole forest to the stunted peat swamp padang
forest with significantly lower AGB. Our result sug-
gests that some of the high biomass forests in Kali-
mantan are located in the peat swamps surrounding
Lake Sentarum and in the Sebangau National Park
(dark red areas in the northwest and south of Kali-
mantan visible in figure 4(a)) that correspond to pri-
mary peat swamp tall pole forests (section 3.5). At the
same time, the peat swamp forests also show an overall
lower AGB due to large-scale degradation and forest
fires, particularly in areas outside and surrounding the
Sebangau National Park that include large-scale rice
fields (Rose et al 2011).

Among the remaining vegetation types in Kali-
mantan, the scrublands cover an area of about
6.88 Mha with average AGB of 54.8±5.5 Mgha−1,
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and swamp scrublands 3.96Mha with an average AGB
of 40.7±4.9 Mgha−1 (figure 4(b)). Tree plantations
cover 7.84 Mha and have an average 34.7±
10.1 Mgha−1 indicating that the IMF map only con-
siders themost recent plantations in this class andmay
have confused older and higher biomass plantations
with some remaining natural trees as degraded forests.
Note that we assign a higher confidence to the results
regarding the target land cover classes because the
lidar-AGB models have been developed using field
inventory collected over those forest types.

3.3. AGBof degraded forests
The FDI derived degradation map shows a clear
gradient of decreasing forest degradation towards
inland and mountainous areas (figure 4(c)). The
impact of degradation on AGB storage can be
estimated using the average density for different
FDI classes that range from intact old growth
(357.2±12.3 Mgha−1) to severe degraded forests
(134.2±6.1 Mgha−1, table 1). The AGB of intact
forests increased by about 50 Mg/ha on average after
improving the classification of intact and forests using

Figure 2. Flowchart showing different components of themethodological system to produce the biomassmap of Kalimantan, forest
degradationmap, and the emission factors for different land use activities in the region. All data used as input to the system are shown
in green boxes and include airborne and satellite remote sensing data, land cover and land usemap, and ground biomass plots. The
intermediate products developed as part of the data processing are shown in grey boxes. Key operations including the development
and implementation of spatialmodeling and estimation are shown in pink cylinders, and thefinal products, including themaps, and
mean and variance of carbon stocks for land use activities are shown in yellow boxes.

Figure 3. Lidar-AGBmodels established as a function of plot-level lidar-derivedMCHdefined at a resolution of 0.25 ha and 0.1 ha for
drylands (green line) andwetlands (blue line), respectively. The percentages of uncertainty are calculated from the ratio of RMSE to
themeanAGB.Negative values of biasmean that themodel overestimates the observations.
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FDI. The AGB distribution shown in violin plots
(figure 4(d)) demonstrates a significant overlap among
the FDI classes indicating the presence of a large
variability of AGB within each class. For instance,
intact forest can store low values of AGB on higher
elevations and rough topography areas. The intact old
growth forests cover the largest area (7.19 Mha),
followed bymoderate (4.96Mha) and light (4.59Mha)
degraded forests and with high (2.05 Mha) and severe
(3.52Mha) degraded forests being less abundant.

According to the GIS data layers of logging conces-
sions in Kalimantan (figure SI4), only 20% of the sur-
face covered by secondary and degraded forest class
are outside the official logging concession areas. Thus,
logging companies are currently managing 22% out of
the 27% of Kalimantan’s forest biomass stored in sec-
ondary and degraded forests. Not surprisingly, the
AGB density of forests within the logging concessions
(258.0±16.5 Mgha−1) is nearly identical to AGB
density in the secondary and degraded forest class
(tables 1 and SI3). Other agroforestry classes such as
palm oil (9.82 Mha, 59.7±11.3 Mgha−1) and wood
fiber (5.5 Mha, 95.4±13.2 Mgha−1) cover large areas
and store moderate amounts of AGB. We found the
AGB values of forest types in different Kalimantan
administrative areas had no significant differences,
suggesting that the land use activities and practices are
relatively similar across jurisdictions (see SI5.3).

3.4. Lidar versus RF estimates
The difference between lidar- and RF-estimated aver-
aged AGB is relatively low for the target land cover
classes, with 1.9% for intact lowland forest,−0.9% for

intact montane forest, 3.6% for secondary and
degraded forests, and 1. 7% for peat swamp forests
(the percentage is relative to average AGB and negative
values means that RF underestimates lidar estimates).
While that difference is also relatively low regarding
the FDI classes (>8%), it reaches 49.5%, 24.3%, and
−60.5% for swamp scrublands, scrublands and plan-
tations, respectively (table 1). Nevertheless, these land
cover classes account only for the 11% of the total area
of Kalimantan and their effects on the average
difference between lidar and RF derived AGB for the
entire region remain bounded at about 6%.

3.5. AGB inwetland forests
We analyzed the AGB density for the main wetlands
present in Kalimantan using AGB estimated directly
from the lidar samples (SI4 and table 2). Primary peat
swamp tall pole forests (also called tall interior forests,
Wösten et al 2008) show a mean AGB density
(457.0±13.8 Mgha−1) significantly higher than sec-
ondary tall pole forests (207.4±0.7 Mgha−1). These
results must be taken with caution because the lidar-
AGB model for wetlands does not include plots with
AGB exceeding 350 Mgha−1, but the model has been
used to predict significantly larger biomass forests.
Nevertheless, the AGB map indicates that tall interior
forests are within the densest areas of Kalimantan,
which agrees with field measurements reported in
Verwer and van der Meer 2010 (645.34 Mgha−1). Tall
interior forests are highly heterogeneous in terms of
forest structure ranging from swamp areas with large
tree gaps and low AGB to areas with densely packed
and tall trees (5th and 95th percentile in table 2).

Table 1.Kalimantan’s average AGBdensity±the corresponding uncertainty calculated considering the spatial autocorrelation (SI6.4) by
land cover type according to the IMF and FDI land covermap (figures 4(b) and (c)). Results are shown for both the lidar sampling and the RF
wall-to-wallmap. Columns called 5th and 95th correspond to the respective percentiles of the AGBdensity distribution. The target classes
for thosewe have field data for calibration are denotedwith *.

Surface covered AGBdensity (Mgha−1) 5th (Mgha−1) 95th (Mgha−1)

Land cover lidar (ha) RF (Mha) lidar RF lidar RF lidar RF

Classed derived from IMF land covermap

Intact lowland forest* 16 584 7.98 306.8±1.9 312.7±20.6 87.4 74.9 591.2 458.8

Intactmontane forest* 765 2.26 313.8±9.2 311.0±51.2 175.0 233.3 458.3 387.5

Secondary and degraded forest* 35 852 13.11 252.3±1.14 261.3±18.0 52.83 74.5 536.86 455.6

Peat swamp forest* 26 511 3.62 208.2±0.7 211.8±12.7 70.7 30.9 357.7 403.3

Swamp scrublands 17 739 3.96 27.22±0.2 40.7±4.9 0.17 0.5 145.60 154.1

Scrublands 9551 6.88 44.10±0.9 54.8±5.5 0.1 0.9 139.1 116.0

Tree plantations 3687 7.84 88.3±0.7 34.7±10.1 0.1 1.5 237.64 203.7

Target classes * 79 710 27.0 249.6±1.1 274.1±14.0 62.4 71.2 508.7 448.6

Total 110 696 45.6 190.8±0.2 178.4±7.5 0.8 2.6 467.6 416.4

Classes derived fromFDI land covermap

Intact forest 13 076 7.19 386.7±2.3 357.2±12.3 199.9 244.8 648.3 498.1

Light degraded forest 6623 4.59 308.7±2.9 320.1±6.4 159.5 206.7 497.6 447.4

Moderate degraded forest 11 655 4.96 262.3±2.0 278.2±11.4 106.3 149.3 444.2 407.4

High degraded forest 5016 2.05 208.5±2.8 222.1±5.3 70.9 88.1 371.6 347.0

Severe degraded forest 12 395 3.51 138.9±1.4 134.2±6.1 31.5 20.8 281.3 284.1

Total 48 765 22.3 265.0±1.0 284.5±11.6 64.0 77.0 524.6 452.5
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Figure 4. (a)Wall-to-wall AGBdensitymap of Kalimantan and (b)mean density AGB aggregated by land cover class derived from the
IMFmap (SI2.2). In (c)we show themeanAGBdensity according to the land cover classes derived from the FDImap (section 2 and
SI1.4) and in (d) their distribution through violin plots and box-and-whisker diagrams. The bottom and top of the boxes (commonly
called hinges) correspond to the 25th and 75th percentiles and the band inside to the 50th percentile ormedian. The upper whiskers
extend from the hinge to the highest valuewithin the 1.5*IQR of the hinge value, where IQR stands for the inter-quantile range. The
vertical lines that cross thewhiskers correspond to the 5th and 95th percentile. Outliers are not shown in the graph for visualization
purposes.

Table 2. Lidar-derived statistics for themainwetlands land cover classes: surface covered, average AGBdensity±the corresponding
uncertainty calculated considering the spatial autocorrelation (SI6.4), the 5th and 95th percentiles of the distribution. Note that these
statistics correspond to the lidar coverage and not to thewall-to-wall RFmap. *Peat swamp tall pole forest is also called tall interior forest
(Wösten et al 2008).

Land cover Surface covered (ha) Average AGBdensity (Mg/ha) 5th 95th

Burnt peat swamp forest 437 18.5±1.3 0 84.1

Alang-alang 1113 17.8±0.7 0 54.2

Riverine forest 1061 54.0±1.8 0.2 163

Peat swamppadang forest 3422 95.5±1.2 0.8 220.9

Secondary peat swamp tall pole forest* 26 161 207.4±0.7 75.4 351.9

Primary peat swamp tall pole forest* 208 457.0±13.8 119.9 900.2
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Of the remaining wetland vegetation types, peat
swamp pandang forest has an AGB density of
95.5±1.2 Mgha−1, because of their short stature and
less homogenous cover. Other wetland classes all have
low AGB density. The burned peatlands with AGB of
18.5±1.3 Mgha−1 show very little recovery since
being classified in the IMF map, and riverine forests,
composed largely of woody vegetation, have higher
AGB density (54.0±1.8 Mgha−1) than Alang-Alang,
which is composed of herbaceous plants.

3.6. Uncertainty analysis
We report the uncertainty in estimating average AGB
density for all land cover types and also at jurisdictional
scales (table 2, SI3 and SI4) using error propagation
throughout the AGB estimation and considering the
spatial autocorrelation of the errors (SI6.4). The uncer-
tainty associated with the lidar-AGBmodels for drylands
and wetlands differ significantly (RMSE of 62.2 Mgha−1

and 19.28 Mgha−1, figure 3) due to more heterogeneous
nature of dryland structure and degradation compared to
wetland forests. Both models showed small bias through
cross-validation with plot data with 2.03 Mgha−1 for
drylands −1.19 Mgha−1 for wetlands. Similarly, the RF
predictions also had small systematic error from cross-
validation (bias=0.49±10.9 Mgha−1) but a relatively
large random error (RMSE=101.9±11.3 Mgha−1)

(table SI5).
The uncertainty of the map also remains bounded

(<7%) for every land cover class of interest ensuring
that the wall-to-wall map provides precise average and
total AGB estimates at the scale of land cover classes or
jurisdictions. The only exception is the intactmontane
forests with average AGB of 311 ± 51.2 Mgha−1 and
uncertainty that reaches to about 16% (table SI6). For
degradation classes derived from FDI thresholds, the
uncertainty remains lower (<4%) than similar classes
from the IMFmap, suggesting that the average AGB of
these classes of degradation can be estimated with
higher confidence because they are structurally more
homogeneous than the IMFmap (table 1).

The RF predicted AGB at 1 ha pixels shows a rela-
tively good agreement with an independent set of
ground-estimated AGB (R2=0.73, figure 5). The field
plots used for comparisonhave been covered by airborne
lidar butwerenot used for thedevelopment of lidar-AGB
models (SI6.5). However, these results should be taken
with cautionbecause the plots are locatedwithin the lidar
flights and the RF predictions are prone to overfitting the
lidar data used in training the map. Field plots located in
areas with forest structure significantly different from
those coveredby the lidarmayhave largeruncertainty.

4.Discussion and conclusions

4.1. Lidar and ground sampling design
The derived AGB distribution in Kalimantan forests is
based on a probabilistic airborne lidar sampling that

ensures unbiased estimates of mean and total forest
AGB subject to the choice of the lidar-AGB model
(Ståhl et al 2016), similar to ground inventory sample
measurements that can produce unbiased estimates
given the right biomass allometry. However, due to
requirements for planning airborne flights in the
region, the lidar sampling design provided only 29
lidar scenes for a total of 29 000 ha. These samples,
although randomly located across the region, are not
widespread and do not adequately capture the varia-
tions of all types of forests. Selecting smaller sampling
areas (∼500 ha) and a larger number of samples could
have improved the RF predictions and the uncertainty
of estimates for all forest types present in the region.
Given additional resources, an improved sampling
strategy based on land cover stratification can be used
for future sampling design.

We collected a larger number of airborne lidar
data over existing plot networks to allow development
of reliable and unbiased lidar-AGBmodels. The lack of
any systematic inventory plots in the region and the
diversity in existing plot size and quality are con-
sidered sources of errors that cannot be readily quanti-
fied or mitigated. However, our methodology allows
for improvement of lidar-AGB models by acquiring
additional ground inventory data within the lidar
coverage.

4.2. Spatial uncertainty
Unlike the previous AGB maps (Saatchi et al 2011a,
Baccini et al 2012), we developed forest-type specific
lidar-AGB models (for drylands and wetlands) that
adjust to differences in the 3D forest structure and tree
density in order to reduce the uncertainty associated
with lidar estimates of AGB. The average AGB values
for the target land cover classes derived from the
RF prediction map are in agreement with the

Figure 5.Comparison between field-derived AGB and the
estimates of ourmap. Smallerfields plots have been
aggregated to 1 ha in order to compare to theAGBmap (refer
to SI6.5).
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lidar-derived estimates, suggesting the map as a
reliable tool to estimate the average AGB density for
different land cover classes or at landscape scales
(100–10 000 ha). One of the limitations of the RF
prediction algorithm is the problem of overfitting the
distribution that may lead to underestimation of the
range of biomass variability, a so-called dilution bias.
Although we included a bias correction approach that
improves the uncertainty of the RF prediction bias
(Xu et al 2016), the map still shows differences at
the 5th and 95th percentiles with the lidar-AGB
distribution (table 1).

Furthermore, the map may slightly underestimate
high biomass density due to the lack of sensitivity of
satellite imagery used in RF models. Upcoming satel-
lite missions (NASA-ISRO NISAR mission, NASA
GEDImission and ESA BIOMASSmission) are expec-
ted to improve the sensitivity of measurements to for-
est structure and AGB across the entire biomass range,
particularly in the dense tropical forests and across
the complex terrains (LeToan et al 2011, Yu and
Saatchi 2016). However, the underestimation is in
general much smaller than the predicted sensitivity of
the satellite data used as input layers to develop the
machine learning algorithms. Both the existing radar
and optical sensors are known to be saturated over
dense tropical forests when used directly in para-
meteric models to estimate forest biomass (Saatchi
et al 2011b). The non-parametric machine-learning
approach has a significantly more efficient way of
using the spatial variations of the data layers to extra-
polate or estimate forest biomass from the training
data. The approach includes the use of spatial distribu-
tion of training data from lidar-derived biomass to
increase the probability of predicting biomass values
across landscapes. For example, most remaining high
biomass forests are located across upland and higher
elevation landscapes and the RFmodel uses the SRTM
(elevation and surface ruggedness) to predict the high
biomass forests in Kalimantan (S13). In addition,
other layers such as short wavelength and near infra-
red bands of multi-spectral Landsat imagery potential
help to separate high biomass forests due to shadows
from dense layered canopy structures and older aged
leaves from open and younger aged leaves of degraded
and secondary forests (Steininger 1996).

4.3. Intact forests versusmajestic forests
The average AGB estimates for drylands intact forests
reported in the literature in recent years are relatively
higher (436 Mgha−1 in Slik et al 2010, 426 Mgha−1 in
Qie et al 2017) than the estimates from the RF map
(357.2 Mgha−1) or lidar sampling (386.7 Mgha−1).
Similarly, the RF AGB prediction of the peat swamp
forests of 218±12.7 Mgha−1 is relatively lower than
those published by Verwer and van derMeer (2010) of
278.85Mgha−1 and, Murdiyarso et al (2010) of 269.55
Mgha−1. We expect our results from either the RF

map or the lidar sampling to be more realistic because
of the probabilistic sampling approach used in our
study. Most research plots in these studies do not
follow a systematic sampling and are often located in
areas of high biomass forests that lead to an over-
estimation of the AGB in Kalimantan, the so-called
majestic forest effect (Sheil 1995). The high-resolution
lidar observations used in our study capture the
natural variability of structure and biomass in intact
forests caused by topography, soil variations, wind and
other natural disturbance. By providing the 5th and
95th biomass values for different forest types, the
range of biomass in intact forests can be readily
compared with published results. Furthermore, by
adjusting the values of mean canopy height and
percent of large trees, the spatial products from this
study can be used to delineate areas of high biomass
density characteristic of themajestic forests.

4.4. Logging versus degradation
Following the CDM of the Kyoto Protocol guidelines
(UNFCCC 2002), we define forest as an area with
vegetation higher than 5m andwith cover that exceeds
30% of the 1 ha grid cells. We developed the FDI to
map different degrees of forest degradation and
improve the IMF based on Landsat imagery. The
average biomass loss from degradation based on our
study is much larger (up to 50%) than what is reported
in the literature for selectively logged forests in
Kalimantan (3%–15%) (Sasaki and Putz 2009, Kron-
seder et al 2012, Pearson et al 2014). Using the FDI
index, we were able to delineate the lightly and
moderately degraded forests within the Landsat land
cover map that closely capture the selectively logged
forests. However, other types of degradations due to
different logging intensity (Pearson et al 2014), frag-
mentations, loss of biomass from edge effects, and fire,
reported from our study, must be considered as
degradation in accounting for carbon loss and emis-
sions in the region.

4.5. Carbon storage versus potential
Based on the RF map, the intact and light degraded
forests cover (11.78Mha) approximately the same size
area of moderate to severe degraded forests combined
(10.53 Mha), suggesting a large area of dryland forests
with significant potential for carbon sequestration. By
focusing on dryland forests, the total carbon stored in
about 22.3 Mha of forests is approximately 3.1 PgC
(using average AGB of 284.5Mgha−1 from table 1, and
the carbon fraction of 0.48). The emission factors
associated with degradation can be calculated by the
difference between the average carbon storage of intact
and degraded forests that multiplied by the area
occupied by the degraded forests provide the carbon
sequestration or storage potential of degraded forests.
We find the storage potential of degraded forests to be
about 0.8–1.1 PgC depending on emission factors
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calculated from lidar or RF map. Kalimantan degraded
forests have significantly larger storage potential per ha
(70.2 MgCha−1) than the entire Latin America second-
growth forests of age 1 to 60 years (35.33MgCha−1) and
over a shorter period of time (Chazdon et al2016).
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